Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133679, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325093

RESUMO

Focusing on the relatively unexplored presence of micro- and nano-plastic aerosol particles, this study quantitatively assessed the emission of nano-plastic particles during the machining of carbon fiber reinforced plastic (CFRP) in the working environment. Measurements of aerosol particles smaller than 1 µm in size were performed by aerosol mass spectrometry. The findings revealed that concentrations of carbonous aerosol particles (organic aerosol and refractory black carbon (rBC)) were higher during working hours than during non-working hours. Positive matrix factorization identified CFRP particles as a significant source, contributing an average of approximately 30% of concentration of carbonous aerosol particles during working hours. This source apportionment was corroborated by the presence of bisphenol A and F fragments, principal components of the epoxy resins used in CFRP, and was corroborated by similarities to the carbon cluster ion distribution observed in rBC during CFRP pipe-cutting operations. Further, the particle size distribution suggested the existence of plastic aerosol particles smaller than 100 nm. This study established the method to quantitatively distinguish nano-plastic aerosol particles from other aerosol particles in high temporal resolution and these techniques are useful for accurately assessing exposure to nano-plastic aerosol particles in working environments.

2.
Int Arch Occup Environ Health ; 95(7): 1557-1565, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212801

RESUMO

OBJECTIVES: Carbon fibers are used in a variety of industrial applications, based on their lightweight and high stiffness properties. There is little information on the characteristics and exposure levels of debris generated during the factory processing of carbon fibers or their composites. This study revisits the general assumption that carbon fibers or their debris released during composite processing are considered safe for human health. METHODS: The present interventional study was conducted at a factory located in Japan, and involved on-site collection of debris generated during the industrial processing of polyacrylonitrile (PAN)-based carbon-fiber-reinforced plastic (CFRP). The debris were collected before being exhausted locally from around different factory machines and examined morphologically and quantitatively by scanning electron microscopy. The levels of exposure to respirable carbon fibers at different areas of the factory were also quantified. RESULTS: The collected debris mainly contained the original carbon fibers broken transversely at the fiber's major axis. However, carbon fiber fragments morphologically compatible with the WHO definition of respirable fibers (length: > 5 µm, width: < 3 µm, length/width ratio: > 3:1) were also found. The concentrations of respirable fibers at the six examined factory areas under standard working conditions in the same factory were below the standard limit of 10 fibers/L, specified for asbestos dust-generating facilities under the Air Pollution Control Law in Japan. CONCLUSIONS: Our study identified potentially dangerous respirable fibers with high aspect ratio, which was generated during the processing of PAN-based CFRP. Regular risk assessment of carbon fiber debris is necessary to ensure work environment safety.


Assuntos
Poluentes Ocupacionais do Ar , Carbono , Fibra de Carbono , Humanos , Exposição por Inalação , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA